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MINIMUM DISTANCE ESTIMATION OF MIXTURE MODEL PARAMETERS -
ASYMPTOTIC RESULTS AND SIMULATION COMPARISONS

WITH MAXIMUM LIKELIHOOD

Wayne A. Woodward, William C. Parr,
William R. Schucany, and Henry L. Gray

ABSTRACT

The estimation of mixing proportions in the mixture model is

discussed with emphasis on the mixture of two normal

components with all five parameters unknown. Simulations are

presented which compare minimum distance(MD) and maximum

likelihood(ML) estimation of the parameters of this

mixture-of-normals model. Some practical issues of

implementation of these results are also discussed.

Simulation results indicate that ML techniques are superior

to MD when component distributions actually are normal,

while MD techniques provide better estimates than ML under

symmetric departures from component normality. Results are

presented which establish strong consistency and asymptotic

normality of the MD estimator under conditions which include

the mixture-of-normals model. Asymptotic variances and

relative efficiencies are obtained for further comparison of

the MDE and MLE. !,ur
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MINIMUM DISTANCE ESTIMATION OF MIXTURE MODEL PARAMETERS -
ASYMPTOTIC RESULTS AND SIMULATION COMPARISONS

WITH MAXIMUM LIKELIHOOD

Wayne A. Woodward, William C. Parr,
William R. Schucany, and Henry L. Gray

1. Introduction

An important problem in aerospace remote sensing is the

estimation of the mixing proportions plP2,...,pm in the

mixture density

f(x) = Plfl(x) + P2 f2 (x) + ... + Pmfm(x)

where m is the number of components(crops) in the mixture

and for component i,f.(x) is a density. The variable of

interest, X, is some measurement such as the reflected

energy in four bands of the light spectrum as measured by

the LANDSAT satellite, certain linear combinations of these

readings, or other derived "feature" variables.

Generally, parameter estimation in mixture model

applications has been accomplished by assuming that the

component distributions are normal and using maximum

likelihood(ML) techniques. In a recent report, Woodward, et.

al.(1982) have examined the use of minimum distance(MD)

estimation based on the Cramir-von Mlses distance, as an

alternative to maximum likelihood. Both ML and MD estimation
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schemes in that paper were based upon the mixture of two

univariate normal distributions whose density function is

given by 1 1 X- _ 2

1 2)
f(x) P e al -1  + (1-P) e a2 ,

o I o2

where all 5 parameters iJ1 , al, )2, a2, and p are unknown. It

was also assumed that no training data are available, i.e.,

the only observations are from the mixture distribution. In

this setting, motivated by the crop example, p is the

parameter of paramount importance while location and scale

of the components are nuisance parameters. Woodward, et. al.

(1982). compare ML and MD estimation techniques on simulated

mixtures of normal, t(4), and chi-square(9) densities with

varying amounts of separation. The results indicate that the

MDE is more robust than the MLE to symmetric departures from

component normality, while neither technique provides

satisfactory results when component distributions are

skewed.

In this report, we present further simulation results

comparing ML and MD estimation of the mixing proportion

based on a mixture-of-normals model, when in fact the

component distributions are not normal, yet represent

symmetric departures from normality. Unless otherwise

indicated, reference to the MDE in this report will involve

the use of Cramer-von Mises distance. We also present

asymptotic results which establish the strong consistency
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and asymptotic normality of MD estimators of the parameters

in the mixture-of-normals model, and finally provide

asymptotic relative efficiencies for comparing the MLE and

MDE in this setting.

2. Simulation Results

In this section we report the results of a Monte Carlo

study designed to compare the ML and MD estimators based

upon a mixture-of-normals when the simulated component

distributions are normal and when they are non-normal. These

comparisons are made under varying degrees of separation

between the two component distributions. All computations

were performed on the CDC 6600 at Southern Methodist

University.

In these simulations, the mixing proportion, p, takes

on the values .25, .50, and .75. For a given mixture, the

component distributions differ from each other only in

location and scale. In particular, fi(x) is taken to be the

density associated with a random variable X-aY while f2 (x)
is the density for X-Y+b where a>0, b>0. Thus, a is the

ratio of scale parameters for the densities f, and f2 , and

similarly, b is the difference in location parameters. The

random variable Y in our simulations is either normal,

Student's t with 2 or 4 degrees of freedom, or double

exponential. In our simulations we use a-i and a- / while b
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is selected to provide the desired separation between the

component distributions. The number of modes of the mixture

density depends to a large extent on this separation between

the two component distributions. Although, for sufficient

separation, the mixture model has a characteristic bimodal

shape, the density may by unimodal when there is only

moderate separation between the components, and in this

case, parameter estimation is more difficult than it is in

the bimodal cases. For purposes of quantifying this

separation between the components, a measure of "overlap"

between two distributions was defined by Woodward et.

al.(1982).

For each set of parameter configurations, 500 samples

of size n=100 were generated from the corresponding mixture

distribution. Simulations were based on the IMSL

multiplicative congruential uniform random number generator

GGUBS. Normal component observations were generated using

IMSL subroutine GGNPH which uses the polar method, while

t(n) observations were based on the ratio of independent

chi-square and normal deviates, each obtained using IMSL

routines. Double exponential components were based on ln(U)

where U is uniform(0,1), and randomly assigning either a

positive or negative sign. In all cases, observations from

the basic component distribution under investigation were

simulated and then assigned to either component 1 or

component 2 depending upon whether an independent
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uniform(0,1) was less than or greater than p. The

observations were then scaled and shifted (with a and b) to

provide observations from the appropriate component.

For each sample simulated, both the MDE and MLE were

obtained. The iterative procedures discussed by Woodward et.

al. (1982) were implemented in such a way that acceptable

parameter estimates are obtained for each sample. For

example, if the iterative procedure fails to converge in the

specified number of iterations, the last value obtained in

the iteration is taken to be the estimate if this value is

"reasonable" according to preset criteria. In general, if

any of the following conditions existed at any step in the

iteration,

al > Yn - Y1 (= sample range)

02 > Yn - Y1* Yn-Yl
Ui -C Y  1 10

Y -Y
> Y + Y

2 n 1

iteration is terminated and the corresponding estimate is

taken to be the starting value. This did not occur in any of

the 500 repititions, for most configurations, but did occur

a maximum of 7 times out of 500 for MD estimates of the

parameters of a mixture of t(2) components. The extreme

observations which occasionally appear in samples from t(2)

mixtures, also forced a modification in the first step of

the MLE iteration to avoid a division by zero. Although both

J-wl
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estimation procedures provide estimates of all 5 of the

parameters, only the results for estimation of p will be

tabulated since the mixing proportion is the parameter of

primary interest, as previously mentioned. In addition, when

dealing with the non-normal mixtures, the remaining

parameter estimates often do not have a meaningful

interpretation.

In Table 1 we present summary results of the

simulations comparing the performance of the MLE and MDE for

mixtures of normal components while in Table 2 we display

the results for the non-normal components. The results for

normal and t(4) components were previously given in Woodward

et. al.(1982). Estimates of the bias and MSE based upon the

simulations are given by:
n

Bias (pi-p)
S i=l

and

n sMSE '- i=l

where ns is the number of samples, and p1  denotes an

estimate of p for the ith sample. It should be noted that

nMSE is the quantity actually given in the tables since this

facilitates comparison with asymptotic variances in

Section 4. Since the MLE and MDE are both asymptotically

unbiased (this will be discussed for the MDE in the next

section),n s SE/C2 is approximately X2(500). It is easy to

5I
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Table 1 - Simulation Results for Mixtures of Normal Componenrs

Sample size = 100

Number of Replications - 500

Overlap - .10 Overlap - .03

Ratio
of Scale MDE MDE

p Factors(a) Bias nMSE E Closer Bias riMSE E Closer

MDE .125 7.80 .55 .38 .026 1.09 .49 .39
.25 1 1LE .052 4.26 .008 .539

Start .084 2.06 .048 .782
MDE .010 3.86 .83 .41 .001 .420 .91 .46

.50 1 MLE .000 3.21 .000 .382
Start -.005 1.22 .001 .634
-DE .084 5.30 .42 .32 .027 .956 .51 .38

.25 /2 MLE .002 2.25 .006 .489
Start -.004 .894 .014 .510
MDE .005 2.79 .86 .43 .008 .441 .94 .45

.50 2 MLE -.009 2.41 .009 .416
Start -.089 1.85 -.048 .866
MDE -.137 8.36 .58 .36 -.024 1.08 .44 .42

.75 r L ME -.086 4.87 -.002 .470
Start -.158 3.97 -.093 1.56



Table 2. Simulation Results for Mixtures
c Non-normal Components

Sample size = 100

Number of replications = 500

Double Exponential Components

Overlap - .10 Overlap = .03

Ratio
of Scale ,MDE DE

p Factors(a) Bias nMSE E Closer Bias nMSE E Closer

MDE .054 2.96 2.13 .66 .030 .545 1.18 .50
.25 1 MLE .091 6.31 .026 .645

Start .065 1.40 .078 1.04

MDE .007 1.03 4.04 .69 -.001 .286 1.29 .54
.50 1 MLE .007 4.16 -.001 .368

Start -.004 1.17 .000 .414

MDE .102 4.42 1.40 .60 .035 .775 1.07 .48
.25 i/2 MLE .034 6.17 .037 .832

Start .011 .926 .050 .678

MDE .032 1.50 2.71 .68 .003 .259 1.44 .58
.50 V2 MLE .073 4.06 .009 .372

Start -.088 1.86 -.035 .570
MDE -.037 2.20 2.94 .73 -.026 .344 .94 .44

.75 i2 MLE -.067 6.47 -.014 .323
Start -.151 3.31 -.107 1.63

t(4) Components

MDE .104 6.18 1.19 .61 .020 .466 1.89 .49
.25 1 MLE .096 7.35 .029 .883

Start .068 1.59 .072 .998
MDE .004 1.82 3.07 .69 .000 .266 1.64 .53

.50 1 MLE .015 5.59 -.005 .436

Start .006 1.21 -.001 .496
MDE .098 5.20 .89 .53 .029 .605 1.61 .49

.25 /2 MLE .061 4.63 .044 .976

Start -.010 .810 .036 .654

MDE .022 1.80 2.77 .67 .001 .300 1.85 .55
,50 r MLE .028 4.99 .010 .554

Start -.072 1.52 -.046 .778
MDE -.058 3.68 2.13 .65 -.016 .361 1.57 .50

.75 /2 MLE -.076 7.84 -.012 .567
Start -. 137 3.07 -. 108 1.75

IL
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Table 2 -- Continued

t(2) Components

Overlap .10 Overlap = .03

Ratio
of Scale MDE IME

p Factors(a) Bias nMSE E Closer Bias rniSE E Closer

MDE .076 3.42 4.30 .80 .024 .308 10.32 .65.25 1 KLE .199 1.4.7 .083 3.18
Start .067 1.85 .096 1.37

MDE -.001 1.34 9.03 .92 -.005 .264 9.24 .63
.50 1 MLE .024 12.1 -.009 2.44

Start -.004 1.39 -.002 .364

LMDE .118 4.92 2.26 .69 .031 .452 7.70 .69
.25 r2 MLE .169 11.1 .106 3.48

Start .006 1.18 .071 .962
MDE .016 1.52 7.76 .89 -.001 .243 8.27 .68

.50 r MLE .028 11.8 .029 2.01
Start -.078 2.08 -.032 .508
MDE -.059 2.99 5.79 .85 -.022 .300 11.40 .63

.75 r ME -.186 17.31 -.045 3.42
Start -137 3.37 -.122 1.96

"Ma
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show then, that the approximate standard error of a tabled

nMSE is (.0632)(nMSE). In addition, we also provide the

ratio

MSE(MLE)
MSE(MDE)

as an empirical relative efficiency measure.

In order to take advantage of the paired nature of our

ML and MD estimates, we counted the proportion of samples

for which is closer to p than is PL, where PD and

denote the MD and ML estimates respectively. We present this

proportion in the tables under the heading "MDE Closer".

This provides an estimate of P{.p -P1<1pL-P11 The

standard error of the binomial proportions shown in the

tables is no greater than (5)(5) = .022.500

Analyzing the results, and as can be seen by

inspection, we find that the estimated Bias and KSE

associated with the MLE were generally smaller than those

for the MDE when the components were actually normally

distributed. This relationship between the estimators held

for both overlaps. The MLE and MDE were quite similar at

p=,.5 while for p=.25 and p=.7S the superiority of the MLE is

more pronounced.

For the mixtures of non-normal components, the

relationship between MDE and MLE is reversed in that the MDE

generally has the smaller estimated Bias and MSE, especially

. .
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for t(2) mixtures. The superiority of the NDE is due in part

to the heavy tails in these components. The MLE often

interpreted an extreme observation as being the only sample

value from one of the populations with all remaining

observations belonging to the other. Due to the well known

singularities associated with a zero variance estimate for a

component distribution, Day(1969), we were concerned that

the observed behavior of the MLE was due to the fact that

the variances were not constrained away from zero.

However,simulation results in which equal variances were

assumed (which removes the singularity) and also those that

used a penalized MLE suggested by Redner(1980) were very

similar to those quoted here.

A surprising result which was previously noted by

Woodward et. al. (1982) is that the starting values obtained

using the procedure outlined in Section 3 produced

estimators that were competitive with both the MLE and MDE.

For both the normal and non-normal mixtures, the MSEs

associated with the starting values were generally lower

than those for the MDE and MLE when overlap=.10. However,

when overlap-.03, the starting value estimates were

generally poorer than those for the MDE and MLE, except for

the t(2) mixtures for which the MLEs were the poorest.
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3. Asymptotic Distribution Theory for Minimum
Cramnr-von Mises Distance Estimation

Asymptotic theory for minimum Cramer-von Mises distance

estimators for location parameters can be found in Parr and

Schucany(1980), and for. the general one parameter case in

Parr and de Wet(1981). Bolthausen(1977) gives results for

the mutiparameter case, but with conditions which are so

strict as to rule out scale parameters for unbounded random

variables (see his condition III). The purpose of the

results in this section is to extend this previous work to

cover multiparameter situations including, among others, the

problem of normal mixtures.

Assume that at stage n we observe real-valued X1 ,

X2''''Xn iid from a distribution with cdf G and let Gn

denote the usual empirical distribution function. Let

-{Fe:eccRk the projection model, be a family of

continuous distribution functions and assume that GEJ,

i.e., Ge for some 80 e . Further, assume that there
0exists an open set ACG with 80cA . Also consider the

following continuity(C) and differentiability(D) conditions:

(C) If ence. n - 1,2,..., then

lim J (F8 (x) - F8 (x))2dF( - 0
n.- -a n 0 0

implies lim n - 00

fl)tm.
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(D) There exists a function n: (0,1) - Rk such that

sup IFe(x)-Fe0 x) - (e-e 0)'n(Fe (x))l =o(Ije-e0Il)

_'~<M0 0

as 11e-8 0 11 - 0, where 1II11 is the usual Euclidean
Rk 12

norm on Rk, and ni(u)du < a for i = 1,2,...,k where
0

'(u) = (nl(u), n2 (u),..,nk(u)).

Notes:

1) Condition C is satisfied if, for instance, F (x) is

continuous in 8 at 8 0 , pointwise in x (use dominated

convergence). It can be interpreted as requiring that e

"continuously parametrize y.

2) If condition C is not satisfied, then this implies

sup IF -F () can be arbitrarily small without having 6

0approach 9 0 . In such a case, the search for any consistent

estimator seems hopeless. In particular, in such a

situation, any consistent estimating functional must be

discontinuous with respect to the sup-norm, and hence highly

nonrobust.

3) Condition D is weaker than (implied by) quadratic
1/2

mean differentiability of fe - the canonical regularity

condition for asymptotic normality of the maximum likelihood

estimator (see LeCam (1970) an Pollard (1980)).
a~ (x)|

4) Usually, n(u) -rr--- I -and condition D simply
" FO (u)
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states the uniform validity of the first order Taylor

approximation to Fe (x). If k-i and 8 is a location

parameter, a sufficient condition to imply D) is that Fe

possess a uniformly continuous density.

Before continuing define the kxk symmetric matrices A

and B by

A =aiD , B = fb

with aij = f ni(u)nj(u)du
0
1 1

and b.j f f fmin(u,v)-uv}ni(u)n j (v)dudv

and assume A to be of full rank. We can now state and

outline the proof of the following strong consistency and

asymptotic normality results.

Theorem 1: Let 8n be a minimum distance estimator of e for

all n-l, 2, .... Then, if condition C holds, en  0 with

probability one.

Proof: Clearly, I(Gn-Fe )2dFe -0 with probability one,
0 20

and hence also inf f (G n-F) 2dFq - 0 with probability one.
8G

Now,

2 2suplf(Gn-F)dF - f(F-Fe) dFej c 4 suplGn(t)-F (t) i - 0
a -W<t<' 0

with probability one. Hence,

f(F e  2F )dFn f(F2e Fe )dFe 0o- n) - (en-o 0 0



15

with probability one, and strong consistency of On follows

from the assumption.

Theor2m 2: Assume conditions C and D and that A is of full

rank. Then, if f8(x) is continuous in 8 at 80 for every x,

Vn O PN(0, A- BA ).

Proof. (Sketched)

Set

K n() = nf(Gn-F0 +rlV-) 2dFe o+ ,- for 5 : Rk.

Then we have

Kn () = nf(Gn-F -(Fe F,//F0 ) 2 dF
n -0 0 4 - 0 V,

+ nf(G-F Fe+t,-Fe ))2d[ F + /,i-Fq(n-F 0- eF 0 /n F0 0 n 0

0 p(1) + f1(Un(n) - &'n(t) - R (t)) 2dt,0n'

uniformly in E for ' C, for any C < -, where
sup iR(t)I * 0 with probability one, also uniformly in
0<t<l
for ' < C. Here, Un(t) = /n(Gn(F W()t), 0 < t < i.

By an extension of the argument of Pyke (1970, p. 29-30) to

the present context, we obtain that the limiting law of the

random variable minimizing Kn( ) over is also that of the
n

value minimizing

J (B(t) - ,ln(t))2dt,
0

where B is a Brownian bridge. The result then follows

immediately.

It can be shown that the mixture of normals model satisfies the
conditions of both Theorem 1 and Theorem 2.
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4. Asymptotic Relative Efficiencies

Theorem 2 of the previous section indicates that for

the mixture-of-normals model, we have

(e-e0 N -

where e = (pt a 2 ,  02 p ) and en  is the vector of

corresponding MD estimators using Cramer-von Mises distance.

Likewise, it is well known that

rn (8 L 0~ 0' 0, 1(a

where eL is the MLE of 0 and 1(80)is Fisher's information

matrix. We will employ the usual terminology and refer to

A 1BA-l and 1(00) as asymptotic variance - covariance matrices

and to their diagonal elements as asymptotic variances of

the corresponding estimators. In this section we will

present computed asymptotic variances for the MDE of p,

which is denoted by pD, and compare these with the asymptotic

variances associated with the MLE, denoted by PL"

The components of the matrix A were evaluated using the

expression

- &i(x)&j(x)fe(x)dx

where F6 (x) and fe(x) denote the distribution function and

density function respectively for the mixture, ei is the ith
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component of e, and

(x Fe x)

1

This integral was evaluated using IMSL subroutine DCADRE

which employs Romberg extrapolation to perform numerical

integration of an integral over a finite interval. In our

implementation, we used DCADRE to evaluate the integral

L

f &i %W(x) f(x)dx,

U

where L-min(-10a1 +ul,-10 2+ 2) and U-max(10cI +ul,10 2+ ;2)

with maximum allowable absolute error specified as

1.0 X 1015 and relative error of 1.0 X 1012. The double

integral

f J F8 (min(x, y) - Fi F (x)j (Y) f x) f (y) dxdy

m m

involved in calculating the elements of the matrix B is

approximated by using IMSL subroutine DBLIN to perform a

Romberg integration of the integral

U U

J fe(F (min(x,y) -F6(x)Fe(y)V}& &x )jy)fe(x)fe(y)dxdy
L L'

with maximum allowable absolute errror specified as

1.0 x lo"9 .

The calculation of the information matrix for the
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mixture-of-normals model is discussed by sehboodian(1972).

We have followed Behboodian's procedure and used

Gauss-Hermite quadrature to approximate the integrals

involved. Using 48-point quadrature we obtain good agreement

with Behboodian's tabled results.

In Table 3 we display the asymptotic variances for PD
A

and PL along with asymptotic relative efficiency (ARE)

calculated as

asymptotic variance

ARE --- --------------------

asymptotic variance ^ IP

These values are calculated for each of the parameter

configurations employed in Table 1 for the normal mixtures.

As in Table 1, the asymptotic results indicate that the MDE

compares more favorably with the MLE when p-.5 while its

relative performance is not as good for p=.25 or p-.75.
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Table 3 - Asymptotic Relative Efficiencies

Overlap - .10 Overlap = .03

Ratio
of Scale Asymptotic Asymptotic

p Factors(a) Variance ARE Variance ARE

MDE 13.60 .42 .471 .69
(7.80)* (.55) (1.09) (.49)

.25 1 MLE 5.67 .323
(4.26) (.539)

MDE 4.54 .65 .398 .89
(3.86) (.83) (.420) (.91)

.50 1 ?LE 2.95 .355
(3.21) (.382)

MDE 18.77 .32 .511 .65
(5.30) (.42) (.956) (.51)

.25 r MLE 5.96 .330
(2.25) (.489)

MDE 3.49 .68 .395 .89
(2.79) (.86) (.441) (.94)

.50 v2 MLE 2.39 .353
(2.41) (.416)

MDE 5.51 .58 .420 .73
(8.36) (.58) (1.08) (.44)

.75 / KLE 3.18 .305
(4.87) (.470)

*Associated Monte Carlo results from Table I are given in parentheses.
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5. Concluding Remarks

We believe that the results of this paper provide

further evidence that the use of the MDE should be

considered in crop proportion estimation procedures

developed by NASA. Our results, again, and more conclusively

than before, indicate that the MDE is indeed more robust

than the MLE in the sense that it is less sensitive to

symmetric departures from the underlying assumption of

nornality of component distributions.

Woodward et. al. (1983) have investigated basing the ND

estimation procedure on a mixture of Weibull components in

order to allow for possible asymmetry in the component

distributions. Their results indicate that this approach

provides a viable alternative to the normal-based procedures

discussed here. Research is also proceeding on the case of

multiple (>2) components in the mixture.

The results of Section 4 indicate that the MDE does not

perform as well as would be hoped when the data actually do

arise from a mixture-of-normals model. We are currently

examining the use of the Hellinger metric in this .egard due

the results of Beran(1977) concerning the full asymptotic

relative efficiency of minimum Hellinger distance

estimators.
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